Approximation Algorithms for the k-center Problem: An Experimental Evaluation
نویسندگان
چکیده
In this paper we deal with the vertex k-center problem, a problem which is a part of the discrete location theory. Informally, given a set of cities, with intercity distances specified, one has to pick k cities and build warehouses in them so as to minimize the maximum distance of any city from its closest warehouse. We examine several approximation algorithms that achieve approximation factor of 2 as well as other heuristic algorithms. In particular, we focus on the clustering algorithm by Gonzalez, the parametric pruning algorithm by Hochbaum-Shmoys, and Shmoys’ algorithm. We discuss several variants of the pure greedy approach. We also describe a new heuristic algorithm for solving the dominating set problem to which the k-center problem is often reduced. We have implemented all the algorithms, experimentally evaluated their quality on 40 standard test graphs in the OR-Lib library, and compared their results with the results found in the recent literature.
منابع مشابه
Approximation Solutions for Time-Varying Shortest Path Problem
Abstract. Time-varying network optimization problems have tradition-ally been solved by specialized algorithms. These algorithms have NP-complement time complexity. This paper considers the time-varying short-est path problem, in which can be optimally solved in O(T(m + n)) time,where T is a given integer. For this problem with arbitrary waiting times,we propose an approximation algorithm, whic...
متن کاملAn Evaluation of Four Electrolyte Models for the Prediction of Thermodynamic Properties of Aqueous Electrolyte Solutions
In this work, the performance of four electrolyte models for prediction the osmotic and activity coefficients of different aqueous salt solutions at 298 K, atmospheric pressure and in a wide range of concentrations are evaluated. In two of these models, (electrolyte Non-Random Two-Liquid e-NRTL and Mean Spherical Approximation-Non-Random Two-Liquid MSA-NRTL), association between ions of opposit...
متن کاملMinimizing a General Penalty Function on a Single Machine via Developing Approximation Algorithms and FPTASs
This paper addresses the Tardy/Lost penalty minimization on a single machine. According to this penalty criterion, if the tardiness of a job exceeds a predefined value, the job will be lost and penalized by a fixed value. Besides its application in real world problems, Tardy/Lost measure is a general form for popular objective functions like weighted tardiness, late work and tardiness with reje...
متن کاملEfficient Approximation Algorithms for Point-set Diameter in Higher Dimensions
We study the problem of computing the diameter of a set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...
متن کاملEvaluation of Bi-objective Scheduling Problems by FDH, Distance and Triangle Methods
In this paper, two methods named distance and triangle methods are extended to evaluate the quality of approximation of the Pareto set from solving bi-objective problems. In order to use evaluation methods, a bi-objective problem is needed to define. It is considered the problem of scheduling jobs in a hybrid flow shop environment with sequence-dependent setup times and the objectives of minimi...
متن کامل